.RU

Поражающие факторы ядерного взрыва - «Ядерное оружие»


^ Поражающие факторы ядерного взрыва.
Поражающее действие ядерного взрыва определяется механическим воздействием ударной волны, тепло­вым воздействием светового излуче­ния, радиационным воздействием про­никающей радиации и радиоактивного заражения. Для некоторых элементов объектов поражающим фактором явля­ется электромагнитное излучение (электромагнитный импульс) ядерного взрыва.

Распределение энергии между по­ражающими факторами ядерного взрыва зависит от вида взрыва и ус­ловий, в которых он происходит. При взрыве в атмосфере примерно 50 % энергии взрыва расходуется на обра­зование ударной волны, 30 — 40% — на световое излучение, до 5 % — на проникающую радиацию и электромаг­нитный импульс и до 15 % —на радио­активное заражение.

Для нейтронного взрыва характер­ны те же поражающие факторы, одна­ко несколько по-иному распределяется энергия взрыва: 8 — 10% — на образо­вание ударной волны, 5 — 8 % — на световое излучение и около 85 % рас­ходуется на образование нейтронного и гамма-излучений (проникающей ра­диации).

Действие поражающих факторов ядерного взрыва на людей и элементы объектов происходит не одновременно и различается по длительности воз­действия, характеру и масштабам по­ражения.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

-ударная волна

-световое излучение

-проникающая радиация

-радиоактивное заражение местности

-электромагнитный импульс

Рассмотрим их.

^ 8.1) Ударная волна

В большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает.

За первые 2 сек ударная волна проходит около 1000 м, за 5 сек - 2000 м, за 8 сек - около 3000 м.

Это служит обоснованием норматива N5 ЗОМП "Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек, удовлетврительно-4 сек.

^ Крайне тяжелые контузии и травмы у людей возникают при избыточном давлении более 100 кПа (1 кгс/см2). Отмечаются разрывы внутренних органов, переломы костей, внутрен­ние кровотечения, сотрясение мозга, длительная потеря сознания. Разры­вы наблюдаются в органах, содержа­щих большое количество крови (пе­чень, селезенка, почки), наполненных газом (легкие, кишечник) или имею­щие полости, наполненные жидкостью (желудочки головного мозга, мочевой и желчный пузыри). Эти травмы мо­гут привести к смертельному исходу.

^ Тяжелые контузии и травмы воз­можны при избыточных давлениях от 60 до 100 кПа (от 0,6 до 1,0 кгс/см2). Они характеризуются сильной конту­зией всего организма, потерей созна­ния, переломами костей, кровотечени­ем из носа и ушей; возможны повреж­дения внутренних органов и внутрен­ние кровотечения.

^ Поражения средней тяжести возни­кают при избыточном давлении 40 — 60 кПа (0,4—0,6 кгс/см2). При этом могут быть вывихи конечностей, кон­тузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей.

^ Легкие поражения наступают при избыточном давлении 20 — 40 кПа (0,2—0,4 кгс/см2). Они выражаются в скоропроходящих нарушениях функ­ций организма (звон в ушах, голово­кружение, головная боль). Возможны вывихи, ушибы.

Избыточные давления во фронте ударной волны 10 кПа (0,1 кгс/см2) и менее для людей и животных, распо­ложенных вне укрытий, считаются безопасными.

Радиус поражения обломками зда­ний, особенно осколками стекол, раз­рушающихся при избыточном давле­нии более 2 кПа (0,02 кгс/см2) может превышать радиус непосредственного поражения ударной волной.

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутст­вии убежищ используются противорадиационные укрытия, подземные вы­работки, естественные укрытия и рель­еф местности.

Механическое воздейст­вие ударной волны. Характер разрушения элементов объекта (пред­метов) зависит от нагрузки, создавае­мой ударной волной, и реакции пред­мета на действие этой нагрузки.

Общую оценку разрушений, вы­званных ударной волной ядерного взрыва, принято давать по степени тя­жести этих разрушений. Для большин­ства элементов объекта, как правило, рассматриваются три степени—сла­бое, среднее и сильное разрушение. Для жилых и промышленных зданий берется обычно четвертая степень— полное разрушение. При слабом раз­рушении, как правило, объект не вы­ходит из строя; его можно эксплуати­ровать немедленно или после незна­чительного (текущего) ремонта. Средним разрушением обычно называют разрушение главным образом второ­степенных элементов объекта. Основ­ные элементы могут деформироваться и повреждаться частично. Восстанов­ление возможно силами предприятия путем проведения среднего или капи­тального ремонта. Сильное разруше­ние объекта характеризуется сильной деформацией или разрушением его основных элементов, в результате чего объект выходит из строя и не может быть восстановлен.

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются следующим состоянием конструкции.

^ Слабое разрушение. Разрушаются оконные и дверные заполнения и лег­кие перегородки, частично разрушает­ся кровля, возможны трещины в сте­нах верхних этажей. Подвалы и ниж­ние этажи сохраняются полностью. Находиться в здании безопасно, и оно может эксплуатироваться после про­ведения текущего ремонта.

^ Среднее разрушение проявляется в разрушении крыш и встроенных эле­ментов— вутренних перегородок, окон, а также в возникновении трещин в стенах, обрушении отдельных участ­ков чердачных перекрытий и стен верх­них этажей. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зда­ний возможно при проведении капи­тального ремонта.

^ Сильное разрушение характеризу­ется разрушением несущих конструк­ций и перекрытий верхних этажей, об­разованием трещин в стенах и дефор­мацией перекрытий нижних этажей. Использование помещений становится невозможным, а ремонт и восстановле­ние чаще всего нецелесообразным.

^ Полное разрушение. Разрушаются все основные элементы здания, вклю­чая и несущие конструкции. Использо­вать здания невозможно. Подвальные помещения при сильных и полных раз­рушениях могут сохраняться и после разбора завалов частично использо­ваться.

Наибольшие разрушения получают наземные здания, рассчитанные на собственный вес и вертикальные на­грузки, более устойчивы заглубленные и подземные сооружения. Здания с ме­таллическим каркасом средние разру­шения получают при 20 — 40 кПа, а полные — при 60—80 кПа, здания кир­пичные — при 10 — 20 и 30 — 40, здания деревянные — при 10 и 20 кПа соответ­ственно. Здания с большим количест­вом проемов более устойчивы, так как в первую очередь разрушаются запол­нения проемов, а несущие конструкции при этом испытывают меньшую на­грузку. Разрушение остекления в зда­ниях происходит при 2—7 кПа.

Объем разрушений в городе зави­сит от характера строений, их этаж­ности и плотности застройки. При плотности застройки 50 % давление ударной волны на здания может быть меньше (на 20 — 40 %), чем на здания, стоящие на открытой местности, на таком же расстоянии от центра взры­ва. При плотности застройки менее 30 % экранирующее действие зда­ний незначительно и не имеет практи­ческого значения.

Энергетическое, промыш­ленное и коммунальное обо­рудование может иметь следую­щие степени разрушений.

^ Слабые разрушения: деформации трубопроводов, их повреждения на стыках; повреждения и разрушении контрольно-измерительной аппарату­ры; повреждение верхних частей ко­лодцев на водо-, тепло- и газовых се­тях; отдельные разрывы на линии электропередач (ЛЭП); повреждения станков, требующих замены электро­проводки, приборов и других повреж­денных частей.

^ Средние разрушения: отдельные разрывы и деформации трубопрово­дов, кабелей; деформации и повреж­дения отдельных опор ЛЭП; деформа­ция и смещение на опорах цистерн, разрушение их выше уровня жидкости;

повреждения станков, требующих ка­питального ремонта.

^ Сильные разрушения: массовые разрывы трубопроводов, кабелей и разрушения опор ЛЭП и другие раз­рушения, которые нельзя устранить при капитальном ремонте.

Наиболее стойки подземные энер­гетические сети. Газовые, водопровод­ные и канализационные подземные се­ти разрушаются только при наземных взрывах в непосредственной близости от центра при давлении ударной вол­ны 600 — 1500 кПа. Степень и харак­тер разрушения трубопроводов зависят от диаметра и материала труб, а также от глубины прокладки. Энергети­ческие сети в зданиях, как правило, выходят из строя при разрушении эле­ментов застройки. Воздушные линии связи и электропроводок получают сильные разрушения при 80 — 120 кПа, при этом линии, проходящие в ради­альном направлении от центра взры­ва, повреждаются в меньшей степени, чем линии, проходящие перпендику­лярно к направлению распространения ударной волны.

^ Станочное оборудование предприя­тий разрушается при избыточных давлениях 35 — 70 кПа. Измерительное оборудование — при 20 — 30 кПа, а наиболее чувствительные приборы мо­гут повреждаться и при 10 кПа и даже 5 кПа. При этом необходимо учиты­вать, что при обрушении конструкций зданий также будет разрушаться обо­рудование.

Для гидроузлов наиболее опасны­ми являются надводный и подводный взрывы со стороны верхнего бьефа. Наиболее устойчивые элементы гид­роузлов — бетонные и земляные пло­тины, которые разрушаются при дав­лении более 1000 кПа. Наиболее слабые — гидрозатворы водосливных плотин, электрическое оборудование и различные надстройки.

Степень разрушений (поврежде­ний) транспортных средств зависит от их положения относитель­но направления распространения ударной волны. Средства транспорта, расположенные бортом к направлению действия ударной волны, как прави­ло, опрокидываются и получают боль­шие повреждения, чем машины, обра­щенные к взрыву передней частью. Загруженные и закрепленные средст­ва транспорта имеют меньшую сте­пень повреждения. Более устойчивы­ми элементами являются двигатели. Например, при сильных повреждениях двигатели автомашин повреждаются незначительно, и машины способны двигаться своим ходом.

Наиболее устойчивы к воздействию ударной волны морские и речные суда и железнодорожный транспорт. При воздушном или надводном взрыве по­вреждение судов будет происходить главным образом под действием воз­душной ударной волны. Поэтому по­вреждаются в основном надводные части судов — палубные надстройки, мачты, радиолокационные антенны и т. д. Котлы, вытяжные устройства и другое внутреннее оборудование по­вреждаются затекающей внутрь удар­ной волной. Транспортные суда полу­чают средние повреждения при давлениях 60—80 кПа. Железнодорожный подвижной состав может эксплуатиро­ваться после воздействия избыточных давлений: вагоны—до 40 кПа, тепло­возы — до 70 кПа (слабые разру­шения).

Самолеты—более уязвимые объ­екты, чем остальные транспортные средства. Нагрузки, создаваемые из­быточным давлением 10 кПа, доста­точны для того, чтобы образовались вмятины в обшивке самолета, дефор­мировались крылья и стрингеры, что может привести к временному снятию с полетов.

Воздушная ударная волна также действует на растения. Полное по­вреждение лесного массива на­блюдается при избыточном давлении, превышающем 50 кПа (0,5 кгс/см2). Деревья при этом вырываются с корнем, ломаются и отбрасываются, образуя сплошные завалы. При избы­точном давлении от 30 до 50 кПа (03,— 0,5 кгс/см2) повреждается около 50 % деревьев (завалы также сплош­ные), а при давлении от 10 до 30 кПа (0,1 — 0,3 кгс/см2) —до 30% деревьев. Молодые деревья более устойчивы к воздействию ударной волны, чем ста­рые и спелые.

^ 8.2) Световое излучение

По своей при­роде световое излучение ядерного взрыва — совокупность видимого све­та и близких к нему по спектру уль­трафиолетовых и инфракрасных лучей. Источник светового излучения — светящаяся область взрыва, состоящая из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха и грунта (при наземном взрыве). Тем­пература светящейся области в тече­ние некоторого времени сравнима с температурой поверхности солнца (максимум 8000 — 10000 и минимум 1800 °С). Размеры светящейся области и ее температура быстро изменяются во времени. Продолжительность све­тового излучения зависит от мощности и вида взрыва и может продолжаться до десятков секунд. При воздушном взрыве ядерного боеприпаса мощ­ностью 20 кт световое излучение про­должается 3 с, термоядерного заряда 1Мт — 10с. Поражающее действие светового излучения характеризуется световым импульсом. Световым импульсом на­зывается отношение количества свето­вой энергии к площади освещенной поверхности, расположенной перпен­дикулярно распространению световых лучей. Единица светового импульса — джоуль на квадратный метр (Дж/м2) или калория на квадратный сантиметр (кал/см2).

1 Дж/м2=23,9* 10-6кал/см2; 1 кДж/ м2= 0,0239 кал/см2; 1 кал/см2 = 40 кДж/м2. Световой импульс зави­сит от мощности и вида взрыва, рас­стояния от центра взрыва и ослабле­ния светового излучения в атмосфере, а также от экранирующего воздейст­вия дыма, пыли, растительности, неровностей местности и т.д.

При наземных и надводных взры­вах световой импульс на тех же рас­стояниях меньше, чем при воздушных взрывах такой же мощности. Это объ­ясняется тем, что световой импульс излучает полусфера, хотя и большего диаметра, чем при воздушном взрыве. Что касается распространения свето­вого излучения, то большое значение имеют другие факторы. Во-первых, часть светового излучения поглощает­ся слоями водяных паров и пыли непо­средственно в районе взрыва. Во-вто­рых, большая часть световых лучей прежде, чем достичь объекта на по­верхности земли, должна будет прой­ти воздушные слои, расположенные близко к земной поверхности. В этих наиболее насыщенных слоях атмосфе­ры происходит значительное поглоще­ние светового излучения молекулами водяных паров и двуокиси углерода; рассеяние в результате наличия в воз­духе различных частиц здесь также гораздо большее. Кроме того, необхо­димо учитывать рельеф местности. Количество световой энергии, достига­ющей объекта, находящегося на опре­деленном расстоянии от наземного взрыва, может составлять для малых расстояний порядка трех четвертей, а на больших—половину импульса при воздушном взрыве такой же мощности.

При подземных или подводных взрывах поглощается почти все свето­вое излучение.

При ядерном взрыве на большой высоте рентгеновские лучи, излучае­мые исключительно сильно нагретыми продуктами взрыва, поглощаются большими толщами разреженного воз­духа. Поэтому температура огненного шара (значительно больших размеров, чем при воздушном взрыве) ниже. Для высот порядка 30—100 км на све­товой импульс расходуется около 25— 35 % всей энергии взрыва.

Обычно для целей расчета пользу­ются табличными данными зависимо­стей световых импульсов от мощности и вида взрыва и расстояния от центра (эпицентра) взрыва. Эти данные приведены для очень прозрач­ного воздуха с учетом возможности рассеяния и поглощения атмосферой энергии светового излучения.

При оценке светового импульса не­обходимо учитывать возможность воз­действия отраженных лучей. Если земная поверхность хорошо отражает свет (снежный покров, высохшая тра­ва, бетонное покрытие и др.), то пря­мое световое излучение, падающее на объект, усиливается отраженным. Суммарный световой импульс при воздушном взрыве может быть боль­ше прямого в 1,5 — 2 раза. Если взрыв происходит между облаками и землей, то световое излучение, отраженное от облаков, действует на объекты, за­крытые от прямого излучения.

Световой импульс, отраженный от облаков, может достигать половины прямого импульса.

Воздействие светового из­лучения на людей и сельскохозяйственных животных. Световое излучение ядерною взрыва при непосредственном воздействии вы­зывает ожоги открытых участков тела, временное ослепление или ожоги сет­чатки глаз. Возможны вторичные ожо­ги, возникающие от пламени горящих зданий, сооружений, растительности,

воспламенившейся или тлеющей оде­жды.

Независимо от причин возникнове­ния, ожоги разделяют по тяжести по­ражения организма.

^ Ожоги первой степени выражают­ся в болезненности, покраснении и припухлости кожи. Они не представ­ляют серьезной опасности и быстро вылечиваются без каких-либо послед­ствий. При ожогах второй степени об­разуются пузыри, заполненные проз­рачной белковой жидкостью; при по­ражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении. Пострадавшие с ожогами первой и второй степеней, достигающими даже 50—60 % поверх­ности кожи, обычно выздоравливают. Ожоги третьей степени характеризу­ются омертвлением кожи с частичным поражением росткового слоя. Ожоги четвертой степени: омертвление кожи и более глубоких слоев тканей (подкож­ной клетчатки, мышц, сухожилий кос­тей). Поражение ожогами третьей и четвертой степени значительной части кожного покрова может привести к смертельному исходу. Одежда людей и шерстяной покров животных защищает кожу от ожогов. Поэтому ожоги чаще бывают у людей на открытых частях тела, а у живот­ных — на участках тела, покрытых ко­ротким и редким волосом. Импульсы светового излучения, необходимые для поражения кожи животных, покрытой волосяным покровом, более высокие.

Степень ожогов световым излуче­нием закрытых участков кожи зависит от характера одежды, ее цвета, плот­ности и толщины. Люди, одетые в сво­бодную одежду светлых тонов, одеж­ду из шерстяных тканей, обычно мень­ше поражены световым излучением, чем люди, одетые в плотно прилегаю­щую одежду темного цвета или про­зрачную, особенно одежду из синте­тических материалов.

Большую опасность для людей и сельскохозяйственных животных пред­ставляют пожары, возникающие на объектах народного хозяйства в ре­зультате воздействия светового излу­чения и ударной волны. По данным иностранной печати, в городах Хиро­сима и Нагасаки примерно 50 % всех смертельных случаев было вызвано ожогами; из них 20 — 30 % — непосред­ственно световым излучением и 70 — 80 % — ожогами от пожаров.

Поражение глаз человека может быть в виде временного ослепления — под влиянием яркой световой вспыш­ки. В солнечный день ослепление длит­ся 2 — 5 мин, а ночью, когда зрачок сильно расширен и через него прохо­дит больше света, — до 30 мин и бо­лее. Более тяжелое (необратимое) по­ражение — ожог глазного дна — воз­никает в том случае, когда человек или животное фиксирует свой взгляд на вспышке взрыва. Такие необратимые поражения возникают в результате концентрированного (фокусируемого хрусталиком глаза) на сетчатку глаза прямо падающего потока световой энергии в количестве, достаточном для ожога тканей. Концентрация энергии, достаточной для ожога сетчатой обо­лочки, может произойти и на таких расстояниях от места взрыва, на кото­рых интенсивность светового излучения мала и не вызывает ожогов кожи. В США при испытательном взрыве мощ­ностью около 20 кт отметили случаи ожога сетчатки на расстоянии 16 км от эпицентра взрыва, на расстоянии, где прямой световой импульс составлял примерно 6 кДж/м2 (0,15 кал/см2). При закрытых глазах временное ослеп­ление и ожоги глазного дна исключа­ются.

Защита от светового излучения бо­лее проста, чем от других поражаю­щих факторов. Световое излучение распространяется прямолинейно. Лю­бая непрозрачная преграда, любой объект, создающий тень, могут слу­жить защитой от него. Используя для укрытия ямы, канавы, бугры, насыпи, простенки между окнами, различные виды техники, кроны деревьев и т. п., можно значительно ослабить или вовсе избежать ожогов от светового излуче­ния. Полную защиту обеспечивают убежища и противорадиационные ук­рытия.

Тепловое воздействие на материалы. Энергия светового им­пульса, падая на поверхность предме­та, частично отражается его поверхно­стью, поглощается им и проходит че­рез него, если предмет прозрачный. Поэтому характер (степень) пораже­ния элементов объекта зависит как от светового импульса и времени его дей­ствия, так и от плотности, теплоемкос­ти, теплопроводности, толщины, цве­та, характера обработки материалов, расположения поверхности к падаю­щему световому излучению, — всего, что будет определять степень поглоще­ния световой энергии ядерного взры­ва.

Световой импульс и время высве­чивания светового излучения зависят от мощности ядерного взрыва. При продолжительном действии светового излучения происходит больший отток тепла от освещенной поверхности в глубь материала, следовательно, для нагрева ее до той же температуры, что и при кратковременном освещении, требуется большее количество свето­вой энергии. Поэтому, чем выше тротиловый эквивалент, тем больший све­товой импульс требуется для воспла­менения материала. И, наоборот, рав­ные световые импульсы могут вызвать большие поражения при меньших мощностях взрывов, так как время их высвечивания меньше (наблюдаются на меньших расстояниях), чем при взрывах большой мощности.

Тепловое воздействие проявляется тем сильнее в поверхностных слоях материала, чем они тоньше, менее про­зрачны, менее теплопроводны, чем меньше их сечение и меньше удельный вес. Однако, если световая поверхность материала быстро темнеет в началь­ный период действия светового излуче­ния, то остальную часть световой энер­гии она поглощает в большем количе­стве, как и материал темного цвета. Если же под действием излучения на поверхности материала образуется большое количество дыма, то его эк­ранирующее действие ослабляет общее воздействие излучения.

К материалам и предметам, спо­собным легко воспламеняться от све­тового излучения, относятся: горючие газы, бумага, сухая трава, солома, су­хие листья, стружка, резина и резино­вые изделия, пиломатериалы, деревян­ные постройки.

Пожары на объектах и в населенных пунктах возникают от светового излучения и вторичных факторов, вызванных воздействием ударной волны. Наименьшее избыточ­ное давление, при котором могут воз­никнуть пожары от вторичных при­чин, — 10 кПа (0,1 кгс/см2). Возгора­ние материалов может наблюдаться при световых импульсах 125 кДж (3 кал/см2) и более. Эти импульсы светового излучения в ясный солнеч­ный день наблюдаются на значительно больших расстояниях, чем избыточное давление во фронте ударной волны

10 кПа. Так, при воздушном ядерном взрыве мощностью 1 Мт в ясную сол­нечную погоду деревянные строения могут воспламеняться на расстоянии до 20 км от центра взрыва, автотранс­порт — до 18 км, сухая трава, сухие листья и гнилая древесина в лесу — до 17 км. Тогда, как действие избыточ­ного давления 10 кПа для данного взрыва отмечается на расстоянии 11 км. Большое влияние на возникнове­ние пожаров оказывает наличие горю­чих материалов на территории объек­та и внутри зданий и сооружений. Све­товые лучи на близких расстояниях от центра взрыва падают под большим углом к поверхности земли; на боль­ших расстояниях — практически па­раллельно поверхности земли. В этом случае световое излучение проникает через застекленные проемы в помеще­ния и может воспламенять горючие материалы, изделия и оборудование в цехах предприятий большинство сор­тов хозяйственных тканей, резины и резиновых изделий загорается при световом импульсе 250—420 кДж/м2 (6—10 кал/см2).

Распространение пожаров на объ­ектах народного хозяйства зависит от огнестойкости материалов, из которых возведены здания и сооружения, изго­товлено оборудование и другие элемен­ты объекта; степени пожарной опас­ности технологических процессов, сы­рья и готовой продукции; плотности и характера застройки.

С точки зрения производства спаса­тельных работ пожары классифициру­ют по трем зонам: зона отдельных по­жаров, зона сплошных пожаров и зона горения и тления в завалах. Зона по­жаров представляет территорию, в пре­делах которой в результате воздейст­вия оружия массового поражения и других средств нападения противника или стихийного бедствия возникли по­жары.

^ Зоны отдельных пожаров пред­ставляют собой районы, участки заст­ройки, на территории которых пожа­ры возникают в отдельных зданиях, со­оружениях. Маневр формирования между отдельными пожарами без средств тепловой защиты возможен.

Зона сплошных пожаров — терри­тория, на которой горит большинство сохранившихся зданий. Через эту тер­риторию невозможен проход или на­хождение на ней формирований без средств защиты от теплового излуче­ния или проведения специальных про­тивопожарных мероприятий по лока­лизации или тушению пожара.

^ Зона горения и тления в завалах представляет собой территорию, на ко­торой горят разрушенные здания и со­оружения I, II и III степени огнестой­кости. Она характеризуется сильным задымлением: выделением окиси угле­рода и других токсичных газов и про­должительным (до нескольких суток) горением в завалах. Сплошные пожа­ры могут развиться в огневой шторм, представляющий собой особую форму пожара. Огневой шторм характеризу­ется мощными восходящими вверх по­токами продуктов сгорания и нагрето­го воздуха, создающими условия для ураганного ветра, дующего со всех сто­рон к центру горящего района со ско­ростью 50—60 км/ч и более. Образование огненных штормов возможно на участках с плотностью застройки зда­ниями и сооружениями III, IV и V сте­пени огнестойкости не менее 20 %. По­следствием воспламеняющего действия светового излучения могут быть об­ширные лесные пожары. Возникнове­ние и развитие пожаров в лесу зависит от времени года, метеорологических условий и рельефа местности. Сухая погода, сильный ветер и ровная мест­ность способствуют распространению пожара. Лиственный лес летом, когда деревья имеют зеленые листья, заго­рается не так быстро и горит с мень­шей интенсивностью, чем хвойный. Осенью световое излучение ослабляет­ся кронами меньше, а наличие сухих опавших листьев и сухой травы спо­собствует возникновению и распрост­ранению низовых пожаров. В зимних условиях возможность возникновения пожаров уменьшается в связи с нали­чием снежного покрова.


^ 8.3) Проникающая радиация

Проникающая радиация представляет собой невидимый поток гамма-квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма-кванты и нейтроны распространяются во все стороны от центра взрыва на сотни метров. С увеличением расстояния от взрыва количество гамма-квантов и нейтронов, проходящее через единицу поверхности, уменьшается. При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма-квантов водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью гамма-квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма-кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации атомов среды, а, следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов.

В зависимости от дозы излучения различают четыре степени лучевой болезни.

Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-400 р.; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя. Третья (тяжелая) степень лучевой болезни возникает при дозе 300-600 р.; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу. Четвертая степень – при дозе свыше 600 р. В большинстве случаев приводит к смертельному исходу.

Безопасной дозой, не приводящей к снижению боеспособности личного состава войск, является доза, равная 50 р.

^ 8.4) Радиоактивное заражение

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда и непрореагировавшей частью заряда, выпадающими из облака взрыва, а также наведенной радиоактивностью.

С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики-от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину нескольких десятков километров.

Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм.

На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

^ 8.5) Электромагнитный импульс

Электромагнитный импульс воздействует, прежде всего, на радиоэлектронную и электронную аппаратуру (пробой изоляции, порча полупроводниковых приборов, перегорание предохранителей и т.д.). Электромагнитный импульс представляет собой возникающее на очень короткое время мощное электрическое поле.

В начале 90-х годов в США стала зарождаться концепция, согласно которой вооруженные силы страны должны иметь не только ядерные и обычные вооружения, но и специальные средства, обеспечивающие эффективное участие в локальных конфликтах без нанесения противнику излишних потерь в живой силе и материальных ценностях.

Генераторы ЭлектроМагнитных Импульсов (супер ЭМИ), как показывают теоретические работы и проведенные за рубежом эксперименты, можно эффективно использовать для вывода из строя электронной и электротехнической аппаратуры, для стирания информации в банках данных и порчи ЭВМ.

Теоретические исследования и результаты физических экспериментов показывают, что ЭМИ ядерного взрыва может привести не только к выходу из строя полупроводниковых электронных устройств, но и к разрушению металлических проводников кабелей наземных сооружений. Кроме того, возможно поражение аппаратуры ИСЗ, находящихся на низких орбитах.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в конце 50-х - начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.

Создание полупроводниковых приборов, а затем и интегральных схем, особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ. С 1970 года вопросы защиты оружия и военной техники от ЭМИ стали рассматриваться министерством обороны США как имеющие высшую приоритетность.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения, и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов, выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля, создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетки. В результате этого резко увеличивается напряженность поля, а, следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 - 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.


  1. poryadok-opredeleniya-dolzhnostnih-okladov-rukovoditelej-prikaz-fsin-rossii-13-11-2008-624-ob-utverzhdenii-novoj.html
    poryadok-opredeleniya-procentnoj-stavki-po-kuponam-nachinaya-so-vtorogo-informaciya-soderzhashayasya-v-nastoyashem-ezhekvartalnom.html
    poryadok-opredeleniya.html
    poryadok-organizacii-raboti-kollegii-informacionnij-byulleten-administracii-sankt-peterburga-12-663-5-aprelya-2010-g.html
    poryadok-osushestvleniya-obshestvennogo-kontrolya-za-soblyudeniem-zakonodatelstva-o-trude-pri-vedenii-kadrovogo-deloproizvodstva.html
    poryadok-pashalnogo-sedera.html
  2. exchangerate.bystrickaya.ru/antivoennij-pafos-v-proizvedeniyah-m-remarka-i-e-hemingueya.html
  3. predmet.bystrickaya.ru/shifr-575027-bibliograficheskij-ukazatel-novih-postuplenij-v-rnmb-yanvar-fevral-2010-g.html
  4. lektsiya.bystrickaya.ru/predvaritelnaya-programma-konferencii-09-00-10-00-registraciya-uchastnikov.html
  5. ucheba.bystrickaya.ru/prioritetnij-nacionalnij-proekt-obrazovanie-stranica-3.html
  6. report.bystrickaya.ru/ierusalim-bilo-podvizhnim-i-v-raznoe-vremya.html
  7. occupation.bystrickaya.ru/nekotorie-itogi-raboti-municipalnih-bibliotek-oblasti-v-2009-godu.html
  8. zanyatie.bystrickaya.ru/upotreblenie-zaimstvovannoj-leksiki-na-primere-nazvanij-sportivnih-tovarov-v-kataloge-seti-sportivnih-magazinov-sportlandiya.html
  9. spur.bystrickaya.ru/l-v-gorelchenkova.html
  10. ucheba.bystrickaya.ru/prizyor-vserossijskoj-olimpiadi-obuchayushihsya-po-fizike-stranica-20.html
  11. desk.bystrickaya.ru/otche-t-po-samoobsledovaniyu-siktivkarskogo-filiala.html
  12. paragraf.bystrickaya.ru/vstupila-v-silu-novaya-redakciya-zhilishnogo-kodeksa-rf-press-obzor-rinka-nedvizhimosti-s-22-iyunya-po-28-iyunya-2011-goda.html
  13. uchebnik.bystrickaya.ru/uchenik-vibiraet-uchitelya-recenzent-m-n-stroeva-doktor-iskusstvovedeniya-burov-a-g-b91-rezhissura-i-pedagogika.html
  14. predmet.bystrickaya.ru/sobitiya-vedomosti-ispolzovana-informaciya-interfaksa-prajm-tass-21112006-219-str-a3.html
  15. lesson.bystrickaya.ru/nadzvichajn-situac-prirodnogo-harakteru.html
  16. student.bystrickaya.ru/-5-prinyatie-nasledstva-obshaya-chast.html
  17. composition.bystrickaya.ru/osobennosti-muzikalnoj-pamyati.html
  18. school.bystrickaya.ru/antimonopolnaya-politika-v-rossii-i-eyo-osobennosti.html
  19. letter.bystrickaya.ru/nazvanie-knigi-stranica-5.html
  20. laboratory.bystrickaya.ru/ustrojstvo-monastirej-obshezhitie-i-otshelnichestvo-zakoni-cerkovnogo-upravleniya.html
  21. portfolio.bystrickaya.ru/polozhenie-o-gorodskom-konkurse-festivale-yunih-inspektorov-dvizheniya-bezopasnoe-koleso-2012.html
  22. urok.bystrickaya.ru/programma-po-discipline-finansovoe-pravo-zarubezhnih-stran-dlya-studentov-5-kursa-do-po-specialnosti-030501-65-yurisprudenciya-mezhdunarodno-pravovogo-fakulteta.html
  23. uchitel.bystrickaya.ru/rabochaya-programma-disciplini-v-od-3-strategicheskij-menedzhment-teoriya-i-praktika-napravlenie-podgotovki-080200-68-menedzhment.html
  24. zanyatie.bystrickaya.ru/ne-imeyut-troechnikov-po-rezultatam-goda-godovoj-otchet-zamestitelej-direktora-po-uchebno-vospitatelnoj-i-nauchno-metodicheskoj.html
  25. laboratory.bystrickaya.ru/voprosi-na-ekzamen-po-marketingu.html
  26. reading.bystrickaya.ru/lichnogo-obayaniya-shepel-viktor-maksimovich-chelovekovedcheskaya-kompetentnost-menedzhera-upravlencheskaya-antropologiya.html
  27. books.bystrickaya.ru/elektronnoe-izdanie-opisanie-diskov-postavki-po-lotu-3-pri-razrabotke-materialov-ispolzovani-resursi.html
  28. zadachi.bystrickaya.ru/sledi-povrezhdenij-na-odezhde.html
  29. books.bystrickaya.ru/distancionnij-kurs-multimedijnie-sredstva-v-obrazovatelnom-processe.html
  30. paragraph.bystrickaya.ru/kratkij-otchet-po-kompleksnoj-programme-za-2009-god-nauchnoe-obespechenie-modernizacii-professionalnogo-obrazovaniya-stranica-7.html
  31. lektsiya.bystrickaya.ru/programma-elektivnogo-kursa-dlya-obuchayushihsya-9-klassov-virashivanie-podvoya-54-118-v-matochnike.html
  32. lecture.bystrickaya.ru/422-poryadok-registracii-i-razmesheniya-gostej-gostinichnie-uslugi.html
  33. shpora.bystrickaya.ru/vvedenie-chto-takoe-sedona-metod-issledovanie-poisk-svobodi-sejchas-i-zdes-41.html
  34. znanie.bystrickaya.ru/7-trebovaniya-k-urovnyu-podgotovki-vipusknika-po-specialnosti-021400-zhurnalistika.html
  35. kontrolnaya.bystrickaya.ru/rabochaya-programma-professionalnoj-podgotovki-voditelej-transportnih-sredstv.html
  36. znanie.bystrickaya.ru/7-avgusta-monastiri-lamayuru-vanla-rizong-alchi-likir-gimalajskimi-tropami.html
© bystrickaya.ru
Мобильный рефератник - для мобильных людей.